
DEPARTMENT OF ELECTRICAL AND COMPUTER ENGINEERING, THE UNIVERSITY OF NEW MEXICO

ECE-238L: Computer Logic Design Fall 2013

Instructor: Daniel Llamocca

Solutions - Homework 1
(Due date: September 12th @ 9:30 am)

Presentation and clarity are very important!

PROBLEM 1 (15 PTS)
a) Simplify the following functions using ONLY Boolean Algebra Postulates and Theorems. For each

resulting simplified function, sketch the logic circuit using AND, OR, XOR, and NOT gates. (8 pts)

 .

b) For the following Truth table with two outputs: (7 pts)
 Provide the Boolean functions using: Sum of Products (SOP), and Product

of Sums (POS).
 Express the Boolean functions using the minterms and maxterms

representations.
 Sketch the logic circuits.

Sum of Products:

Product of Sums:

Minterms and Maxterms: .

 .

X

f1

Y Z

f2

x y z

0 0 0

0 0 1

0 1 0

0 1 1

1 0 0

1 0 1

1 1 0

1 1 1

f1 f2

0 0

1 1

0 1

1 1

1 0

0 1

1 0

1 1

DEPARTMENT OF ELECTRICAL AND COMPUTER ENGINEERING, THE UNIVERSITY OF NEW MEXICO

ECE-238L: Computer Logic Design Fall 2013

Instructor: Daniel Llamocca

PROBLEM 2 (15 PTS)

a) Complete the timing diagram of the following circuit:

b) Complete the timing diagram of the logic circuit whose VHDL description is shown below:

library ieee;

use ieee.std_logic_1164.all;

entity circ is

 port (a, b, c: in std_logic;

 f: out std_logic);

end circ;

architecture st of circ is

 signal x, y: std_logic;

begin

 x <= a and b;

 y <= x nand c;

 f <= y xor (not b);

end st;

c) The following is the timing diagram of a logic circuit with 3 inputs. Sketch the logic circuit that

generates this waveform. Then, complete the VHDL code.

library ieee;

use ieee.std_logic_1164.all;

entity circ is

 port (a, b, c: in std_logic;

 f: out std_logic);

end circ;

architecture st of circ is

 signal x, y: std_logic

begin

 x <= a and not(c);

 y <= c and not(b);

 f <= x or y;

end st;

a

f

b

c

f

a

b

a

x

b

c

c

x

y

y

f

a

f

b

y

c

DEPARTMENT OF ELECTRICAL AND COMPUTER ENGINEERING, THE UNIVERSITY OF NEW MEXICO

ECE-238L: Computer Logic Design Fall 2013

Instructor: Daniel Llamocca

PROBLEM 3 (15 PTS)

Design a circuit (simplify your circuit) that
verifies the logical operation of a XOR
gate. f = '1' (LED ON) if the XOR gate
does NOT work properly. Assumption:
when the XOR gate is not working, it
generates 1's instead of 0's and vice
versa.

PROBLEM 4 (10 PTS)

Design a logic circuit (simplify your circuit) that opens a lock (f = ‘1’) whenever one presses the correct
number on each numpad. We encode each decimal number on the numpad using BCD encoding. We
expect that each group of 4 bits be in the range from 0000 to 1001, the values from 1010 to 1111 are
assumed not to occur.
 Tip: create two circuits: one that verifies the first number (9), and the other that verifies the second

number (5). Then perform the AND operation on the two outputs. This avoids creating a truth table
with 8 inputs!

a

b

fx

?

?

Numpad 1

Numpad 2

a b c

0 0 0

0 0 1

0 1 0

0 1 1

1 0 0

1 0 1

1 1 0

1 1 1

f

0

1

0

0

1

1

1

0

c

ab

0

1

00 01 11 10

f = ac + cb

0 0 1 1

1001

x a b

0 0 0

0 0 1

0 1 0

0 1 1

1 0 0

1 0 1

1 1 0

1 1 1

f

0

1

1

0

1

0

0

1

0 1

1 0

b

xa

0

1

00 01

0 1

1 0

11 10 f = x a b + x a b + x a b + xab

f = (ab)x + (ab)x

f = abx

f
x

a

b

DEPARTMENT OF ELECTRICAL AND COMPUTER ENGINEERING, THE UNIVERSITY OF NEW MEXICO

ECE-238L: Computer Logic Design Fall 2013

Instructor: Daniel Llamocca

PROBLEM 5 (20 PTS)

We want to display the hexadecimal value of a 4-bit number on a 7-segment display. The LEDs are lit
with a logical ‘0’ (negative logic or active low). The inputs are active high (or in positive logic).

 Complete the truth table for each output (a-g).
 Provide the simplified expression for each output (a-g)

a

b

c

d

e

f
g

9: 6:

B:A: C: D: E: F:

b3 b2 b1 b0

0 0 0 0

0 0 0 1

0 0 1 0

0 0 1 1

0 1 0 0

0 1 0 1

0 1 1 0

0 1 1 1

1 0 0 0

1 0 0 1

1 0 1 0

1 0 1 1

1 1 0 0

1 1 0 1

1 1 1 0

1 1 1 1

a b c d e f g

0 0 0 0 0 0 1

1 0 0 1 1 1 1

0 0 1 0 0 1 0

0 0 0 0 1 1 0

1 0 0 1 1 0 0

0 1 0 0 1 0 0

0 1 0 0 0 0 0

0 0 0 1 1 1 1

0 0 0 0 0 0 0

0 0 0 0 1 0 0

0 0 0 1 0 0 0

1 1 0 0 0 0 0

0 1 1 0 0 0 1

1 0 0 0 0 1 0

0 1 1 0 0 0 0

0 1 1 1 0 0 0

x y z w

x y z w

0 0 0 0

0 0 0 1

0 0 1 0

0 0 1 1

0 1 0 0

0 1 0 1

0 1 1 0

0 1 1 1

1 0 0 0

1 0 0 1

1 0 1 0

1 0 1 1

1 1 0 0

1 1 0 1

1 1 1 0

1 1 1 1

f1 f2

0 0

0 0

0 0

0 0

0 0

0 1

0 0

0 0

0 0

1 0

X X

X X

X X

X X

X X

X X

0 0

0 0

zw

xy

00

00 01

X 0

X 1

11 10

0 0

0 0

X X

X X

01

11

10

f1 = wx

0 0

0 1

zw

xy

00

00 01

X 0

X 0

11 10

0 0

0 0

X X

X X

01

11

10

f2 = yzw

X

f1

Y Z

f2

W

f

W

numpad 1

numpad 2

DEPARTMENT OF ELECTRICAL AND COMPUTER ENGINEERING, THE UNIVERSITY OF NEW MEXICO

ECE-238L: Computer Logic Design Fall 2013

Instructor: Daniel Llamocca

0 1

1 0

zw

xy

00

00 01

0 0

1 0

11 10

0 0

0 0

0 1

0 0

01

11

10

0 0

0 1

zw

xy

00

00 01

1 0

0 0

11 10

0 0

0 1

1 1

1 0

01

11

10

0 0

0 0

zw

xy

00

00 01

1 0

0 0

11 10

0 0

1 0

1 0

1 0

01

11

10

0 1

1 0

zw

xy

00

00 01

0 0

0 0

11 10

0 1

0 0

1 0

0 1

01

11

10

0 1

1 1

zw

xy

00

00 01

0 0

0 1

11 10

1 1

0 0

0 0

0 0

01

11

10

0 0

1 0

zw

xy

00

00 01

0 0

1 0

11 10

1 1

1 0

0 0

0 0

01

11

10

1 0

1 0

zw

xy

00

00 01

1 0

0 0

11 10

0 1

0 0

0 0

0 0

01

11

10

a = xyzw + xyzw + xyzw + xyzw

b = xyzw + xyw + xwz + yzw

c = xyzw + xyw + xyz

d = xyzw + xyzw + xyzw + yzw

e = yzw + xyz + xw

f = xyzw + xyz + xyw + xzw

g = xyzw + xyzw + xyz

DEPARTMENT OF ELECTRICAL AND COMPUTER ENGINEERING, THE UNIVERSITY OF NEW MEXICO

ECE-238L: Computer Logic Design Fall 2013

Instructor: Daniel Llamocca

PROBLEM 6 (25 PTS)

In these problems, you MUST show your conversion procedure.

a) Convert the following decimal numbers to i) binary, ii) octal, and iii) hexadecimal. (10 pts)

b) What is the minimum number of bits required to represent: (3 pts)

 50,000 colors?

 32679 symbols?

 Numbers between 25,000 and 29,095?: There are 4096 numbers

 65536 memory addresses in a computer?

c) A microprocessor can handle addresses from 0x0000 to 0x7FFF. How many bits do we need to

represent those addresses? (2 pts)
Note that we want to cover all the cases from 0x0000 to 0x7FFF.

The range from 0x0000 to 0x7FFF is akin to all the possible cases with 15 bits. So we need 15 bits.

d) Complete the following table. (10 pts)

Decimal BCD Binary number Reflective Gray Code

678 0110 0111 1000 1010100110 1111110101

835 1000 0011 0101 1101000011 1011100010

128 0001 0010 1000 10000000 11000000

171 0001 0111 0001 10101011 11111110

49 0100 1001 110001 101001

241 0010 0100 0001 11110001 10001001

114 0001 0001 0100 1110010 1001011

278 0010 0111 1000 100010110 110011101

442 0100 0100 0010 110111010 101100111

631 0110 0011 0001 1001110111 1101001100

0x0000: 000 0000 0000 0000

...

...

...

0x7FFF: 111 1111 1111 1111

