Solutions - Quiz 4 (Online Section)
(Due Date: December 6th by 11:00 am)

Problem 1 (30 pts)
- Complete the timing diagram of the following FSM (represented in ASM form):

Problem 2 (20 pts)
- Provide the state diagram (in ASM form) of the FSM whose VHDL description is listed below:

library ieee;
use ieee.std_logic_1164.all;

entity circ is
 port (clk, rstn: in std_logic;
 a, b: in std_logic;
 x, w, z: out std_logic);
end circ;

architecture behavioral of circ is
 type state is (S1, S2, S3);
 signal y: state;
 begin
 Transitions: process (rstn, clk, a, b)
 begin
 if rstn = '0' then
 y <= S1;
 elsif (clk'event and clk = '1') then
 case y is
 when S1 =>
 if a = '1' then y <= S2;
 else if b = '1' then y <= S3;
 else y <= S1; end if;
 end if;
 when S2 =>
 if a = '1' then y <= S2;
 else y <= S1; end if;
 when S3 =>
 if b = '1' then y <= S3;
 else y <= S1; end if;
 end case;
 end if;
 end process;

 Outputs: process (y, a)
 begin
 x <= '0'; w <= '0'; z <= '0';
 case y is
 when S1 => if a = '1' then z <= '1'; end if;
 when S2 => x <= '1';
 when S3 => w <= '1';
 end case;
 end process;
 end behavioral;

PROBLEM 3 (30 pts)

- **Basic Processor:**

 Available Registers: R0 (register 0, 4 bits), R1 (register 1, 4 bits), PC (program counter, 4 bits), OUT (output register, 4 bits)

 Instruction Memory: Stores up to 16 8-bit instructions.

 Instruction Set: Instructions are specified on the Instruction Register (IR):

 ![IR Diagram]

 \[\text{IR:} \]

 \[\text{OPCODE} \quad \text{DR} \quad \text{SR} \]

 \[\text{IMMEDIATE DATA} \]

 DR=0 \(\Rightarrow \) R0 is the destination register, DR=1 \(\Rightarrow \) R1 is the destination register.

 SR=0 \(\Rightarrow \) R0 is the source register, SR=1 \(\Rightarrow \) R1 is the source register.

<table>
<thead>
<tr>
<th>OPCODE [IR[7..5]]</th>
<th>Instruction</th>
<th>Operation</th>
</tr>
</thead>
<tbody>
<tr>
<td>000</td>
<td>MOV DR, SR</td>
<td>DR (\leftarrow) SR</td>
</tr>
<tr>
<td>001</td>
<td>LOADI DR, DATA</td>
<td>DR (\leftarrow) DATA, DATA = IR[3..0]</td>
</tr>
<tr>
<td>010</td>
<td>ADD DR, SR</td>
<td>DR (\leftarrow) DR + SR</td>
</tr>
<tr>
<td>011</td>
<td>ADDI DR, DATA</td>
<td>DR (\leftarrow) DR + DATA, DATA = IR[3..0]</td>
</tr>
<tr>
<td>100</td>
<td>SR0 DR, SR</td>
<td>DR (\leftarrow) 0&SR[3..1]</td>
</tr>
<tr>
<td>101</td>
<td>IN DR</td>
<td>DR (\leftarrow) IN</td>
</tr>
<tr>
<td>110</td>
<td>OUT DR</td>
<td>OUT (\leftarrow) DR</td>
</tr>
<tr>
<td>111</td>
<td>JNZ DR, ADDRESS</td>
<td>PC (\leftarrow) PC + 1 if DR=0</td>
</tr>
</tbody>
</table>

 * ADDRESS = IR[3..0]

 Write an assembly program for a counter from 1 to 12: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 1, 2, 3, The count must be shown on the output register (OUT). Note that you can only have up to 16 instructions.

 start: loadi R0,1

 loadi R1,4

 loop: out R0 \(\rightarrow \) OUT: shows the count

 addi R0,1

 addi R1,1

 jnz R1, loop

 loadi R0,1

 jnz R0, start

PROBLEM 4 (20 pts)

- **Sequence detector (with overlap):** Draw the state diagram (in ASM form) of a circuit that detects the following sequence: 0110. The detector must assert an output z = ‘1’ when the sequence is detected.