Solutions - Quiz 4 (Online Section)

(Due Date: December 6th by 11:00 am)

PROBLEM 1 (30 PTS)

Complete the timing diagram of the following FSM (represented in ASM form):

PROBLEM 2 (20 PTS)

Provide the state diagram (in ASM form) of the FSM whose VHDL description is listed below:

```
library ieee;
use ieee.std_logic_1164.all;
entity circ is
   port ( clk, rstn: in std_logic;
        a, b: in std_logic;
        x,w,z: out std_logic);
end circ;
```



```
architecture behavioral of circ is
   type state is (S1, S2, S3);
   signal y: state;
begin
  Transitions: process (rstn, clk, a, b)
  begin
     if rstn = '0' then y <= S1;
     elsif (clk'event and clk = '1') then
        case y is
            when S1 =>
               if a = '1' then y \le S2;
                  if b = '1' then y <= S3;
                  else y <= S1; end if;</pre>
               end if;
             when S2 \Rightarrow
                if a = '1' then y <= S2;
                else y <= S1; end if;
             when S3 =>
               if b = '1' then y <= S3;
                else y <= S1; end if;</pre>
           end case;
        end if:
  end process;
  Outputs: process (y,a)
  begin
      x <= '0'; w <= '0'; z <= '0';
      case y is
         when S1 => if a = ^1' then z <= ^1'; end if;
         when S2 \Rightarrow x \Leftarrow '1';
         when S3 => w <= '1';
      end case;
  end process;
end behavioral;
```

PROBLEM 3 (30 PTS)

Basic Processor:

Available Registers: R0 (register 0, 4 bits), R1(register 1, 4 bits), PC (program counter, 4 bits), OUT (output register, 4 bits)

IR (instruction register, 8 bits)

Instruction Memory: Stores up to 16 8-bit instructions.

Instruction Set: Instructions are specified on the Instruction Register (IR):

DR=0 \Rightarrow R0 is the destination register, DR=1 \Rightarrow R1 is the destination register.

SR=0 \Rightarrow R0 is the source register, SR=1 \Rightarrow R1 is the source register.

OPCODE (IR[75])	Instruction	Operation
000	MOV DR, SR	DR ← SR
001	LOADI DR, DATA	$DR \leftarrow DATA$, $DATA = IR[30]$
010	ADD DR, SR	DR ← DR + SR
011	ADDI DR, DATA	$DR \leftarrow DR + DATA, DATA = IR[30]$
100	SRO DR, SR	DR ← 0&SR[31]
101	IN DR	DR ← IN
110	OUT DR	OUT ← DR
111	JNZ DR, ADDRESS	PC ← PC + 1 if DR=0 PC ← IR[30] if DR≠0 * ADDRESS = IR[30]

Write an assembly program for a counter from 1 to 12: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 1, 2, 3, The count must be shown on the output register (OUT). Note that you can only have up to 16 instructions.

```
start: loadi R0,1
    loadi R1,4

loop: out R0 → OUT: shows the count
    addi R0,1
    addi R1,1
    jnz R1, loop
    loadi R0,1
    jnz R0, start
```

PROBLEM 4 (20 PTS)

Sequence detector (with overlap): Draw the state diagram (in ASM form) of a circuit that detects the following sequence: 0110. The detector must assert an output z= '1' when the sequence is detected.

Instructor: Daniel Llamocca