Solutions - Midterm Exam

(October 8th @ 9:30 am)
Clarity is very important! Show your procedure!

PROBLEM 1 (1.5 PTS)
- Complete the following table. Use the fewest number of bits on each case.

<table>
<thead>
<tr>
<th></th>
<th>Decimal</th>
<th>Sign-and-magnitude</th>
<th>1's complement</th>
<th>2's complement</th>
</tr>
</thead>
<tbody>
<tr>
<td>-63</td>
<td>1111111</td>
<td>1000000</td>
<td>1000001</td>
<td></td>
</tr>
<tr>
<td>-26</td>
<td>111010</td>
<td>100101</td>
<td>1100110</td>
<td></td>
</tr>
<tr>
<td>-111</td>
<td>11101111</td>
<td>10010000</td>
<td>10010001</td>
<td></td>
</tr>
<tr>
<td>45</td>
<td>0101101</td>
<td>0101101</td>
<td>0101101</td>
<td></td>
</tr>
</tbody>
</table>

PROBLEM 2 (1.5 PTS)
- a) Convert the decimal number 136.6875 to i) binary, and ii) hexadecimal.
 \[136.6875 = (10001000.1011)_2 = 0x88.B\]
- b) Represent the decimal number 136 in i) BCD, and ii) Reflective Gray Code

<table>
<thead>
<tr>
<th>Decimal</th>
<th>Binary (unsigned)</th>
<th>BCD</th>
<th>Reflective Gray Code</th>
</tr>
</thead>
<tbody>
<tr>
<td>136</td>
<td>10001000</td>
<td>0001 0011 0110</td>
<td>11001100</td>
</tr>
</tbody>
</table>

- c) What is the minimum number of bits to represent numbers between 12,000 and 13,024?
 Numbers between 12000 and 13024: 13024 – 12000 + 1 = 1025
 Minimum number of bits: \[\log_2 1025\] = 11 bits

PROBLEM 3 (1.5 PTS)
Design a circuit (simplify your circuit!) that verifies the logical operation of a NAND gate. \(f = '1' \) (LED ON) if the NAND gate does NOT work properly. Assumption: when the NAND gate is not working, it generates 1's instead of 0's and vice versa.

\[
f = \overline{x} \overline{b} + \overline{x} a + x a b
\]

\[
f = x(ab) + xab
\]

\[
f = x \oplus (ab)
\]
Problem 4 (20 pts)

- Implement the following function using: i) a decoder (and gates) and ii) a multiplexer:
 \[F(X, Y, Z) = \Pi(M_3, M_4, M_5, M_6) \]

- Complete the timing diagram of the circuit shown below:
Problem 5 (15 pts)

- Perform the following operations using the 2’s complement arithmetic. For each case, provide the summands and the result in 2’s complement representation. Use the minimum number of bits to represent the summands and the result so that overflow is avoided.

 - \(-26 + 45 \)

 \[n = 7 \text{ bits} \]

 \[-26 = 1100110 + \]

 \[+45 = 0101101 \]

 \[+19 = 0010011 \]

 overflow = \(c_7 \oplus c_6 = 0 \) -> no overflow

 \[+19 \in [-2^6, 2^6-1] \] -> no overflow

 - \(-63 - 15 \)

 \[n = 7 \text{ bits} \]

 \[-63 = 1000001 + \]

 \[-15 = 111001 \]

 \[0110010 \]

 overflow = \(c_7 \oplus c_6 = 1 \) -> overflow!

 To avoid overflow:

 \[n = 8 \text{ bits (sign-extension)} \]

 \[-63 = 11000001 + \]

 \[-15 = 1111001 \]

 \[-78 = 10110010 \]

 overflow = \(c_8 \oplus c_7 = 0 \) -> no overflow

 \[-78 \in [-2^7, 2^7-1] \] -> no overflow

Problem 6 (10 pts)

- The following VHDL code corresponds to the shaded circuit. Complete the timing diagram:

```vhdl
library ieee;
use ieee.std_logic_1164.all;

entity tst is
  port (b, c: in std_logic;
        z: out std_logic_vector(1 downto 0));
end tst;

architecture bhv of tst is
begin
  process (b, c)
  begin
    z <= c & b;
    if c = '0' then
      z <= "10";
    end if;
  end process;
end bhv;
```

- architecture bhv of tst is
 signal x, y: std_logic;

begin

 process (b, c)
 begin
 z <= c & b;
 if c = '0' then
 z <= "10";
 end if;
 end process;

end bhv;

library ieee;
use ieee.std_logic_1164.all;

entity tst is
 port (b, c: in std_logic;
 z: out std_logic_vector(1 downto 0));
end tst;

architecture bhv of tst is
begin
 process (b, c)
 begin
 z <= c & b;
 if c = '0' then
 z <= "10";
 end if;
 end process;
end bhv;
```
Problem 7 (10 pts)
- Complete the timing diagram of the circuit shown below:

![Timing Diagram]

Bonus Problem (+5 pts)
- A microprocessor has a 24-bit address line. We connect a memory chip to the microprocessor. The memory chip addresses are assigned the range 0x800000 to 0xBFFFFF. What is the minimum number of bits required to represent addresses in that individual memory chip? Explain your procedure.

- If we convert the numbers to binary, we notice that the addresses in the range 0x800000 to 0xBFFFFF require 24 bits.

```
0x800000: 1000 0000 0000 0000 0000 0000
...
0xBFFFFF: 1011 1111 1111 1111 1111 1111
```

- However, we notice that all the addresses in the range 0x800000 to 0xBFFFFF share the same first two MSBs: 10. Therefore, if we were to address data ONLY in the individual memory chip, we do not need those two bits ⇒ we need 22 bits.
- Another way to put it: We only need 22 bits for the address line of that individual memory device.