Solutions - Homework 2
(Due date: October 3rd @ 9:30 am)
Presentation and clarity are very important!

PROBLEM 1 (10 PTS)
- Complete the following table. Use the fewest number of bits for every case. Show your procedure.

<table>
<thead>
<tr>
<th>Decimal</th>
<th>Sign-and-magnitude</th>
<th>1's complement</th>
<th>2's complement</th>
</tr>
</thead>
<tbody>
<tr>
<td>-257</td>
<td>1100000001</td>
<td>1011111110</td>
<td>1011111111</td>
</tr>
<tr>
<td>128</td>
<td>0100000000</td>
<td>0100000000</td>
<td>0100000000</td>
</tr>
<tr>
<td>-120</td>
<td>11111000</td>
<td>10000111</td>
<td>10001000</td>
</tr>
<tr>
<td>-61</td>
<td>11111011</td>
<td>10000100</td>
<td>10000100</td>
</tr>
<tr>
<td>-1022</td>
<td>1111111110</td>
<td>10000000001</td>
<td>10000000010</td>
</tr>
<tr>
<td>511</td>
<td>0111111111</td>
<td>0111111111</td>
<td>0111111111</td>
</tr>
</tbody>
</table>

PROBLEM 2 (1.5 PTS)
- We need to perform the following operations, where numbers are represented in 2's complement:
 - 73 + 45
 - -35 + 64
 - -129 + 128
 - -255 - 230
 - 490 + 47
 - 990 + 113

- For each case:
 ✓ Determine the minimum number of bits required to represent both summands. You might need to sign-extend one of the summands, since for proper summation, both summands must have the same number of bits.
 ✓ Perform the binary addition in 2's complement arithmetic. The result must have the same number of bits as the summands.
 ✓ Determine whether there is overflow by:
 i. Using c_n, c_{n-1} (carries).
 ii. Performing the operation in the decimal system and checking whether the result is within the allowed range for n bits, where n is the minimum number of bits for the summands.
 ✓ If we want to avoid overflow, what is the minimum number of bits required to represent the summands and the result?

\[
\begin{array}{l}
\text{n = 8 bits} \\
\hline
\begin{array}{l}
\begin{array}{c}
+73 = 01001001 + \\
+45 = 00101101
\end{array} \\
\begin{array}{c}
+118 = 01101101 \\
+118 \in [-2^7, 2^7-1] -> no overflow
\end{array} \\
\hline
\begin{array}{c}
+29 = 00011101 \\
\text{overflow = } c_7 \oplus c_7 = 0 -> no overflow
\end{array}
\end{array}
\]

\[
\begin{array}{l}
\text{n = 8 bits} \\
\hline
\begin{array}{l}
\begin{array}{c}
-35 = 11011101 + \\
+64 = 01000000
\end{array} \\
\begin{array}{c}
+29 \in [-2^7, 2^7-1] -> no overflow
\end{array}
\end{array}
\]

\[
\begin{array}{l}
\text{n = 9 bits} \\
\hline
\begin{array}{l}
-129 = 101111111 + \\
+128 = 010000000
\end{array} \\
\begin{array}{c}
-1 = 111111111 \\
\text{overflow = } c_9 \oplus c_8 = 0 -> no overflow
\end{array}
\end{array}
\]

\[
\begin{array}{l}
-1 \in [-2^8, 2^8-1] -> no overflow
\end{array}
\]
PROBLEM 3 (15 pts)

- Sign-extension in 2’s complement: Whenever we need to increase the number of bits for representing a number, we append the MSB to the left as many times as needed:

 \[b_{n-1}b_{n-2}...b_0 \equiv b_{n-1} ... b_{n-1}b_{n-1}b_{n-2} ... b_0 \]

 Examples:

 \[
 00101_2 = 0000101102 = 2^2 + 2^0 = 5 \\
 10101_2 = 1101101_2 = -2^4 + 2^2 + 2^0 = -2^6 + 2^5 + 2^4 + 2^2 + 2^0 = -11
 \]

 We can think of the sign-extended number as an \(m \)-bit number, where \(m > n \):

 \[
 b_{n-1} ... b_{n-1}b_{n-1}b_{n-2} ... b_0 \equiv k_{m-1} ... k_nk_{n-1}k_{n-2} ... k_0
 \]

- Demonstrate that \(b_{n-1}b_{n-2}...b_0 \) represents the same decimal number as \(b_{n-1} ... b_{n-1}b_{n-1}b_{n-2} ... b_0 \), i.e., demonstrate that sign-extension is correct for any \(m > n \).

 Useful formula:

 \[
 \sum_{i=k}^{l} r^i = \frac{r^{l+1} - r^k}{1-r}, \quad r \neq 1
 \]

We need to demonstrate that:

\[
\sum_{i=0}^{m-2} 2^i b_i = -2^{n-1} b_{n-1} + \sum_{i=0}^{n-2} 2^i b_i
\]

Using the formula for 2’s complement numbers:

\[
-2^{m-1}b_{m-1} + \sum_{i=0}^{m-2} 2^i b_i = -2^{n-1} b_{n-1} + \sum_{i=0}^{n-2} 2^i b_i
\]
\[-2^{m-1}b_{m-1} + \sum_{i=n-1}^{m-2} 2^i b_i + \sum_{i=0}^{n-2} 2^i b_i = -2^{n-1}b_{n-1} + \sum_{i=n-1}^{m-2} 2^i b_i \Rightarrow -2^{m-1}b_{m-1} + \sum_{i=n-1}^{m-2} 2^i b_i = -2^{n-1}b_{n-1}\]

\[-2^{m-1}b_{n-1} + b_{n-1} \sum_{i=n-1}^{m-2} 2^i = -2^{n-1}b_{n-1} + \sum_{i=n-1}^{m-2} 2^i = -2^{m-1}b_{n-1} + \sum_{i=n-1}^{m-2} 2^i = -2^{m-1}b_{n-1} - 2^{n-1}b_{n-1} = -2^{n-1}b_{n-1} \cdot -2^{n-1}b_{n-1} = -2^{n-1}b_{n-1}\]

Problem 4 (15 pts)

- Implement the following functions using i) decoders and ii) multiplexers:
 - \(F_a = x + z + zy \)
 - \(F_b = xy + yz + xz \)
 - \(F_c(x, y, z) = \Pi(M_1, M_4, M_7) \)
 - \(F_d = x \oplus y \oplus z \)

<table>
<thead>
<tr>
<th>(w_2)</th>
<th>(w_1)</th>
<th>(w_0)</th>
<th>(x)</th>
<th>(y)</th>
<th>(z)</th>
<th>(F_a)</th>
<th>(F_b)</th>
<th>(F_c)</th>
<th>(F_d)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

Using only 2-to-1 MUXs, implement the XOR and XNOR gates.
Using only a 4-to-1 MUX, implement the following functions.

- \(F_a(X, Y, Z) = \sum(m_1, m_3, m_5, m_7) \)
- \(F_b(X, Y, Z) = \sum(m_3, m_5, m_7) \)
- \(F_c(X, Y, Z) = \sum(m_1, m_3, m_5) \)
- \(F_d(X, Y, Z) = \sum(m_5, m_7) \)

\[
\begin{array}{c|cccc}
X & Y & Z & F_a & F_b & F_c & F_d \\
0 & 0 & 0 & 1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 1 & 0 & 0 \\
0 & 0 & 1 & 1 & 1 & 0 & 0 \\
0 & 0 & 1 & 1 & 1 & 0 & 0 \\
1 & 0 & 0 & 0 & 0 & 0 & 0 \\
1 & 0 & 0 & 1 & 1 & 1 & 0 \\
1 & 1 & 0 & 0 & 0 & 0 & 0 \\
1 & 1 & 1 & 1 & 1 & 0 & 0 \\
\end{array}
\]

PROBLEM 5 (10 pts)

- A 20-bit address line in a µprocessor handles up to \(2^{20} = 1MB \) of addresses, each address containing one-byte of information. We want to connect four 256KB memory chips to the µprocessor.
- Sketch the circuit that: i) addresses the memory chips, and ii) enables only one memory chip (via CE: chip enable) when the address falls in the corresponding range. Example: if address = 0x5FFFF, \(\rightarrow \) only memory chip 2 is enabled (CE=1). If address = 0xD0123, \(\rightarrow \) only memory chip 4 is enabled.
Problem 6 (15 pts)

- Complete the timing diagram of the circuit shown below:

- The following VHDL code corresponds to the shaded circuit. Complete the timing diagram:

```vhdl
library ieee;
use ieee.std_logic_1164.all;

entity tst is
  port (b, c, d: in std_logic;
        z: out std_logic_vector(1 downto 0));
end tst;

architecture bhv of circ is
  signal x, y: std_logic;
  begin
    process (b, c, d)
    begin
      case d is
        when '1' => z <= "01";
        when others => z <= "00";
      end case;
      else
        if c = '0' then z <= "11";
      end if;
      end process;
  end bhv;
```

Library: IEEE

Use: Ieee.Std_logic_1164.All

Entity: Tst

```vhdl
  port (b, c, d: in std_logic;
        z: out std_logic_vector(1 downto 0));
end tst;
```

Architecture: Bhv

```vhdl
  signal x, y: std_logic;
  begin
    process (b, c, d)
    begin
      case d is
        when '1' => z <= "01";
        when others => z <= "00";
      end case;
      else
        if c = '0' then z <= "11";
      end if;
      end process;
  end bhv;
```
PROBLEM 7 (20 pts)

- A straightforward implementation of the multiplication operation (for positive or unsigned numbers) is called **Array Multiplier**: the partial products are added up at every column. The figure depicts the hardware implementation for multiplying two unsigned numbers of 4 bits.

- One of the drawbacks of this approach is the long delay between the input and the output. In the figure, the bits p_7, p_6, p_4, p_4 require the inputs to pass through 4 adders as well as AND gates.
- An alternative implementation, called Wallace Multiplier, features a shorter delay between the input and the output. The hardware implementation is more complicated though.
- The figure shows a Wallace multiplier implementation for two unsigned numbers of 4 bits. Note how the addition operation of the 4 rows has been rearranged so that only 2 rows are added up at every stage.

✓ Write the VHDL implementation for the multiplication operation of two unsigned numbers of 4 bits using: i) Array Multiplier, and ii) Wallace multiplier. Use the Structural Description: create a separate VHDL file for the Full Adder circuit.
✓ Simulate both circuits and make sure that they are performing the correct operation.
✓ Attach your VHDL code, testbench code, and simulation results.
ARRAY MULTIPLIER:

VHDL Code:

```vhdl
library IEEE;
use IEEE.STD_LOGIC_1164.ALL;

entity my_mult is
    generic (N: INTEGER := 4);
    port (A,B: in std_logic_vector (N-1 downto 0);
P: out std_logic_vector (2*N-1 downto 0));
end my_mult;

architecture structure of my_mult is
    component fulladd
        port( cin, x, y : in std_logic;
             s, cout   : out std_logic);
    end component;

    type my_array is array (natural range <>, natural range <>) of std_logic;
    signal m: my_array(N downto 0, N-1 downto 0);
    signal s: my_array(N-1 downto 0, N-1 downto 0);
    signal c: my_array(N-1 downto 0, N-2 downto 0);

begin
    -- Array of N * (N-1) full adders:
    gi: for i in 0 to N-1 generate -- along rows
        gj: for j in 0 to N-1 generate -- along columns
            m(i,j) <= A(i) and B(j);
            fa: if i /= N-1 and j /= N-1 generate
                fij: fulladd port map (cin => c(i,j), x => s(i,j+1) , y => m(i+1,j),
                                         s => s(i+1,j),  cout => c(i+1,j));
            end generate;
            fb: if i = 0 generate
                s(i,j) <= m(i,j);
            end generate;
        end generate;
    end generate;
    m(N,0) <= '0';
    glj: for j in 0 to N-2 generate
        c(0,j) <= '0';
        s(j+1,N-1) <= m(j+1,N-1); -- Column 3 (from rows 1 to N-1)
        P(j+1) <= s(j+1,0);
        flj: fulladd port map (cin => c(N-1,j) , x => s(N-1,j+1), y => m(N,j), s => p(N+j),
                                       cout => m(N,j+1));
    end generate;
    P(0) <= m(0,0);
    P(2*N-1) <= m(N,N-1);
end structure;
```

Full Adder VHDL Code:

```vhdl
library ieee;
use ieee.std_logic_1164.all;

entity fulladd is
    port( cin, x, y : in std_logic;
         s, cout : out std_logic);
end fulladd;

architecture structure of fulladd is
begin
    s <= x xor y xor cin;
    cout <= (x and y) or (x and cin) or (y and cin);
end structure;
```
Testbench Code:

LIBRARY ieee;
USE ieee.std_logic_1164.ALL;
use ieee.std_logic_arith.all;

ENTITY tb_my_mult IS
 generic (N: INTEGER:= 4);
END tb_my_mult;

ARCHITECTURE behavior OF tb_my_mult IS

 -- Component Declaration for the Unit Under Test (UUT)
 COMPONENT my_mult
 PORT(
 A : IN std_logic_vector(N-1 downto 0);
 B : IN std_logic_vector(N-1 downto 0);
 P : OUT std_logic_vector(2*N-1 downto 0)
);
 END COMPONENT;

 --Inputs
 signal A : std_logic_vector(N-1 downto 0) := (others => '0');
 signal B : std_logic_vector(N-1 downto 0) := (others => '0');

 --Outputs
 signal P : std_logic_vector(2*N-1 downto 0);

BEGIN

 -- Instantiate the Unit Under Test (UUT)
 uut: my_mult PORT MAP (
 A => A,
 B => B,
 P => P
);

 -- Stimulus process
 stim_proc: process
 begin
 -- hold reset state for 100 ns.
 wait for 100 ns;
 -- insert stimulus here
 A <= conv_std_logic_vector(3,N); B <= conv_std_logic_vector (5,N); wait for 20 ns;
 A <= conv_std_logic_vector(12,N); B <= conv_std_logic_vector (11,N); wait for 20 ns;
 A <= conv_std_logic_vector(10,N); B <= conv_std_logic_vector (13,N); wait for 20 ns;
 A <= conv_std_logic_vector(8,N); B <= conv_std_logic_vector (14,N); wait for 20 ns;
 A <= conv_std_logic_vector(10,N); B <= conv_std_logic_vector (8,N); wait for 20 ns;
 A <= conv_std_logic_vector(2**N-1,N); B <=conv_std_logic_vector (2**N-1,N); wait for 20 ns;
 A <= conv_std_logic_vector(0,N); B <= conv_std_logic_vector (0,N); wait for 20 ns;

 wait;
 end process;
END;
WALLACE MULTIPLIER (4-bit):

VHDL Code:

```vhdl
library IEEE;
use IEEE.STD_LOGIC_1164.ALL;

entity my_wallace_4bit is
    port (A, B: in std_logic_vector (3 downto 0);
         P : out std_logic_vector (7 downto 0));
end my_wallace_4bit;

architecture structure of my_wallace_4bit is

    component fulladd
        port( cin, x, y : in std_logic;
             s, cout   : out std_logic);
    end component;

type my_array is array (natural range <>, natural range <>) of std_logic;

signal m: my_array(3 downto 0, 3 downto 0);
signal c: my_array(2 downto 0, 4 downto 0);
signal s: my_array(2 downto 0, 4 downto 0);

begin

    gi: for i in 0 to 3 generate -- along rows
         gj: for j in 0 to 3 generate -- along columns
             m(i,j) <= A(i) and B(j);
         end generate;
     end generate;

c(0,0) <= '0'; c(1,0) <= '0'; c(2,0) <= '0';
s(0,4) <= c(0,4); s(1,4) <= c(1,4); s(2,4) <= c(2,4);

    -- First Layer
    f00: fulladd port map (cin => c(0,0), x => m(0,1), y => m(1,0), s => s(0,0), cout => c(0,1));
    f01: fulladd port map (cin => c(0,1), x => m(1,1), y => m(2,0), s => s(0,1), cout => c(0,2));
    f02: fulladd port map (cin => c(0,2), x => m(2,1), y => m(3,0), s => s(0,2), cout => c(0,3));
    f03: fulladd port map (cin => c(0,3), x => m(3,1), y => '0', s => s(0,3), cout => c(0,4));

    -- Second Layer
    f10: fulladd port map (cin => c(1,0), x => m(0,2), y => s(0,1), s => s(1,0), cout => c(1,1));
    f11: fulladd port map (cin => c(1,1), x => m(1,2), y => s(0,2), s => s(1,1), cout => c(1,2));
    f12: fulladd port map (cin => c(1,2), x => m(2,2), y => s(0,3), s => s(1,2), cout => c(1,3));
    f13: fulladd port map (cin => c(1,3), x => m(3,2), y => s(0,4), s => s(1,3), cout => c(1,4));

    -- Third Layer
    f20: fulladd port map (cin => c(2,0), x => m(0,3), y => s(1,1), s => s(2,0), cout => c(2,1));
    f21: fulladd port map (cin => c(2,1), x => m(1,3), y => s(1,2), s => s(2,1), cout => c(2,2));
    f22: fulladd port map (cin => c(2,2), x => m(2,3), y => s(1,3), s => s(2,2), cout => c(2,3));
    f23: fulladd port map (cin => c(2,3), x => m(3,3), y => s(1,4), s => s(2,3), cout => c(2,4));

    P(0) <= m(0,0);
    P(1) <= s(0,0);
    P(2) <= s(1,0);
    P(3) <= s(2,0);
    P(4) <= s(2,1);
    P(5) <= s(2,2);
    P(6) <= s(2,3);
    P(7) <= s(2,4);

end structure;
```
Testbench Code:

LIBRARY ieee;
USE ieee.std_logic_1164.ALL;
use ieee.std_logic_arith.all;

ENTITY tb_my_wallace_4bit IS
END tb_my_wallace_4bit;

ARCHITECTURE behavior OF tb_my_wallace_4bit IS

-- Component Declaration for the Unit Under Test (UUT)

COMPONENT my_wallace_4bit
PORT(
 A : IN std_logic_vector(3 downto 0);
 B : IN std_logic_vector(3 downto 0);
 P : OUT std_logic_vector(7 downto 0)
);
END COMPONENT;

--Inputs
signal A : std_logic_vector(3 downto 0) := (others => '0');
signal B : std_logic_vector(3 downto 0) := (others => '0');

--Outputs
signal P : std_logic_vector(7 downto 0);

BEGIN

-- Instantiate the Unit Under Test (UUT)
 uut: my_wallace_4bit PORT MAP {
 A => A,
 B => B,
 P => P
 };

-- Stimulus process
stim_proc: process
begin
 -- hold reset state for 100 ns.
 wait for 100 ns;
 -- insert stimulus here
 li: for i in 0 to 15 loop
 A <= conv_std_logic_vector(i,4);
 lj: for j in 0 to 15 loop
 B <= conv_std_logic_vector (j,4); wait for 20 ns;
 end loop;
 end loop;
 A <= x"0"; B <= x"0"; wait for 20 ns;
 wait;
end process;

END;