Quiz 4 (Online Section)
(Due Date: December 6th by 11:00 am)

PROBLEM 1 (30 pts)

- Complete the timing diagram of the following FSM (represented in ASM form):

```
library ieee;
use ieee.std_logic_1164.all;

entity circ is
  port ( clk, rstn: in std_logic;
         a, b: in std_logic;
         x, w, z: out std_logic);
end circ;

architecture behavioral of circ is
  type state is (S1, S2, S3);
  signal y: state;
begin
  Transitions: process (rstn, clk, a, b)
  begin
    if rstn = '0' then
      y <= S1;
    elsif (clk'event and clk = '1') then
      case y is
        when S1 => if a = '1' then y <= S2; else y <= S1; end if;
        when S2 => if b = '1' then y <= S3; else y <= S1; end if;
        when S3 => e
      end case;
    end if;
  end process;

  Outputs: process (y, a)
  begin
    x <= '0'; w <= '0'; z <= '0';
    case y is
      when S1 => if a = '1' then z <= '1'; end if;
      when S2 => x <= '1';
      when S3 => w <= '1';
    end case;
  end process;
end behavioral;
```

PROBLEM 2 (20 pts)

- Provide the state diagram (in ASM form) of the FSM whose VHDL description is listed below:
PROBLEM 3 (30 pts)

- **Basic Processor:**

 Available Registers: R0 (register 0, 4 bits), R1 (register 1, 4 bits), PC (program counter, 4 bits),

 OUT (output register, 4 bits)

 IR (instruction register, 8 bits)

 Instruction Memory: Stores up to 16 8-bit instructions.

 Instruction Set: Instructions are specified on the Instruction Register (IR):

 ![Instruction Register Diagram]

 - DR = 0 \(\Rightarrow\) R0 is the destination register, DR = 1 \(\Rightarrow\) R1 is the destination register.
 - SR = 0 \(\Rightarrow\) R0 is the source register, SR = 1 \(\Rightarrow\) R1 is the source register.

<table>
<thead>
<tr>
<th>OPCODE (IR[7..5])</th>
<th>Instruction</th>
<th>Operation</th>
</tr>
</thead>
<tbody>
<tr>
<td>000</td>
<td>MOV DR, SR</td>
<td>DR (\leftarrow) SR</td>
</tr>
<tr>
<td>001</td>
<td>LOADI DR, DATA</td>
<td>DR (\leftarrow) DATA, DATA = IR[3..0]</td>
</tr>
<tr>
<td>010</td>
<td>ADD DR, SR</td>
<td>DR (\leftarrow) DR + SR</td>
</tr>
<tr>
<td>011</td>
<td>ADDI DR, DATA</td>
<td>DR (\leftarrow) DR + DATA, DATA = IR[3..0]</td>
</tr>
<tr>
<td>100</td>
<td>SR0 DR, SR</td>
<td>DR (\leftarrow) 0&SR[3..1]</td>
</tr>
<tr>
<td>101</td>
<td>IN DR</td>
<td>DR (\leftarrow) IN</td>
</tr>
<tr>
<td>110</td>
<td>OUT DR</td>
<td>OUT (\leftarrow) DR</td>
</tr>
</tbody>
</table>
| 111 | JNZ DR, ADDRESS | PC \(\leftarrow\) PC + 1 if DR=0
 | | | PC \(\leftarrow\) IR[3..0] if DR\(\neq\)0
 | | | * ADDRESS = IR[3..0] |

- Write an assembly program for a counter from 1 to 12: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 1, 2, 3, ... The count must be shown on the output register (OUT). Note that you can only have up to 16 instructions.

PROBLEM 4 (20 pts)

- **Sequence detector (with overlap):** Draw the state diagram (in ASM form) of a circuit that detects the following sequence: 0110. The detector must assert an output \(z=1\) when the sequence is detected.