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Notes - Chapter 9 
 

COMPLEX FINITE STATE MACHINES 

 
Digital System Model: FSM + Datapath Circuit 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

EXAMPLE: CAR LOT COUNTER  

 

If A = 1 → No light received (car obstructing LED A) 

If B = 1 → No light received (car obstructing LED B) 
 
If car enters the lot, the following sequence (A|B) must be 
followed: 

 00 → 10 → 11 → 01 → 00 
If car leaves the lot, the following sequence (A|B) must be 
followed: 

 00 → 01 → 11 → 10 → 00 
 

 
 
� FSM +  Datapath circuit: Usually, when ‘resetn’ (asynchronous clear), and ‘clock’ are not drawn, 

they are implied. 
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� Finite State Machine (FSM): 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
� Algorithmic State Machine (ASM) chart:  
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EXAMPLE: ACCUMULATOR  

 
� FSM + Datapath circuit: 

sclr: Synchronous clear. If E = ‘1’ and sclr = ‘1’, then the output bits of the registers are set to zero. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
� Finite State Machine (FSM): 
 
 
 
 
 
 
 
 
 
� Algorithmic State Machine (ASM): 
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EXAMPLE: 7-SEGMENT SERIALIZER  

 
� FSM + Datapath circuit: 
� There are four 7-segment displays on the NEXYS3 board. However, only one can be used at a time.  
� If we want to display four digits (inputs A, B, C, D), we can design a serializer that will only show one 

digit at a time on the 7-segment displays. 
� Since only one 7-segment display can be used at a time, we need to serialize the four BCD outputs. 

In order for each digit to appear bright and continuously illuminated, each digit is illuminated for 1 ms 
every 4 ms (i.e. a digit is un-illuminated for 3 ms and illuminated for 1 ms). This is taken care of by 
feeding the output 'z' of the counter to 0.001 s to the enable input of the FSM. This way, state 
transitions only occur each 0.001 s. 

� Also, the enable signals for the 4 7-segment displays on the NEXYS are active low. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
� Algorithmic State Machine (ASM) chart: This is a Moore-type FSM. 
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EXAMPLE: BIT-COUNTING CIRCUIT 

 
� Sequential Algorithm: 
  
 
 
 
 
 
 
 
� FSM + Datapath circuit: 

sclr: Synchronous clear. In this case, if sclr = ‘1’, the  count is initialized to zero. Note that here, we 

do not need EC to be 1 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

� Algorithmic State Machine  (ASM) chart: 
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EXAMPLE: SIMPLE PROCESSOR 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
� Operation: Every time w = '1', we grab the instruction from ��� and execute it: 
� ���� = |��|��|�	|
��|
�	|
��|
�	| 
 

f Operation Function 
000 Load Rx, Data Rx ← Data 

001 Move Rx, Ry Rx ← Ry 

010 Add Rx, Ry Rx ← Rx + Ry 

011 Sub Rx, Ry Rx ← Rx - Ry 

100 Not Rx Rx ← NOT (Rx) 

101 And Rx, Ry Rx ← Rx AND Ry 

110 Or Rx, Ry Rx ← Rx OR Ry 

111 Xor Rx, Ry Rx ← Rx XOR Ry 
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� Control Circuit: 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
� Arithmetic-Logic Unit (ALU): 
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� Algorithmic State Machine (ASM): 
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EXAMPLE: ARBITER CIRCUIT 

 
� FSM + Datapath circuit: 

Three devices can request access to a certain resource at any time (example: access to a bus made 
of tri-state buffers, only one tri-state buffer can be enabled at a time). The FSM can only grant access 
to one device at a time.There should be a priority level among devices.  
If the FSM grants access to one device, one must wait until the request signal to that device is 
deasserted (i.e. set to zero) before granting access to a different device. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

� Algorithmic State Machine (ASM) chart: 
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EXAMPLE: DISPLAYING PATTERNS ON 7-SEGMENT DISPLAYS 

 
� Different patterns are shown based on the selector ‘sel’ signal. Two 7-segment displays are used. 
� ‘stop’ input: If it is asserted (stop = 1), the lights’ pattern freezes. 
� The input ‘x’ selects the rate of change (every 1.5, 1.0, 0.5, or 0.25 seconds). 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

� FSM + Datapath circuit: 
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� Algorithmic State Machine (ASM) chart: 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

� Algorithmic State Machine (ASM) chart: This is the FSM that controls the output MUX 
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EXAMPLE: SERIAL MULTIPLIER 

 
� Sequential Algorithm: 
  
 
 
 
 
 
 
 
� FSM + Datapath circuit: Note that this algorithm can also be run on a simple processor. Here, we 

use dedicated circuitry. 
sclr: Synchronous clear. In this case, if sclr = ‘1’ and E =’1’, the register contents are initialized to 0. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

� Algorithmic State Machine  (ASM) chart: 
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