
DEPARTMENT OF ELECTRICAL AND COMPUTER ENGINEERING, THE UNIVERSITY OF NEW MEXICO

ECE-238L: Computer Logic Design Fall 2013

Instructor: Daniel Llamocca

Notes - Chapter 9

COMPLEX FINITE STATE MACHINES

Digital System Model: FSM + Datapath Circuit

EXAMPLE: CAR LOT COUNTER

If A = 1 → No light received (car obstructing LED A)

If B = 1 → No light received (car obstructing LED B)

If car enters the lot, the following sequence (A|B) must be
followed:

 00 → 10 → 11 → 01 → 00
If car leaves the lot, the following sequence (A|B) must be
followed:

 00 → 01 → 11 → 10 → 00

� FSM + Datapath circuit: Usually, when ‘resetn’ (asynchronous clear), and ‘clock’ are not drawn,

they are implied.

FINITE STATE
MACHINEresetn

clock

Inputs

Outputs

CONTROL CIRCUIT

DATAPATH CIRCUIT

FINITE STATE
MACHINE

resetn

clock

A

B

CONTROL CIRCUIT

Q
10

10-bit counter

E

ud

E

ud

B

A

photo
receptors

DEPARTMENT OF ELECTRICAL AND COMPUTER ENGINEERING, THE UNIVERSITY OF NEW MEXICO

ECE-238L: Computer Logic Design Fall 2013

Instructor: Daniel Llamocca

� Finite State Machine (FSM):

� Algorithmic State Machine (ASM) chart:

S1 S2

00/00
resetn = 0

A|B/E|ud

01,10,11/00 S3 S4

10/00 11/00

S5

01/00

00/11

00/00

S6

01/00

11/00

10/00 11/00 01/00

01/00

00/00 10/00 11/00

10/00

00/00

S7 S8

11/00 10/00

01/00 11/00

10/0010/00

00/00

00/10

01/00 11/00

00/00 01/00

S1

S2

resetn=0

yes

no

00

AB=00

AB
11

S3

10

10
AB

00

S4

11
AB

10

01 11

00

S4

01
AB

00

01

E, ud ← 1

11
10

S6

01
AB

00

S7

11
AB

01

1011

00

S8

10
AB

00

10

E ← 1

11
01

01

DEPARTMENT OF ELECTRICAL AND COMPUTER ENGINEERING, THE UNIVERSITY OF NEW MEXICO

ECE-238L: Computer Logic Design Fall 2013

Instructor: Daniel Llamocca

EXAMPLE: ACCUMULATOR

� FSM + Datapath circuit:

sclr: Synchronous clear. If E = ‘1’ and sclr = ‘1’, then the output bits of the registers are set to zero.

� Finite State Machine (FSM):

� Algorithmic State Machine (ASM):

QD

resetn

+

QD

20

2088

Dout

Din

FINITE STATE
MACHINE

E

E s
c
l
r

restart

E

Ei sclr

S1

S2

resetn=0

1

0
E

0

restart
1

Ei, sclr ← 1

Ei, sclr ← 1

Ei ← 1

E

Ei ← 1

1

0

0

restart
1

E|restart/Ei|sclr

S1 S2
10/10

resetn = 0

X1/11

10/10

X1/11

00/00
00/00

DEPARTMENT OF ELECTRICAL AND COMPUTER ENGINEERING, THE UNIVERSITY OF NEW MEXICO

ECE-238L: Computer Logic Design Fall 2013

Instructor: Daniel Llamocca

EXAMPLE: 7-SEGMENT SERIALIZER

� FSM + Datapath circuit:
� There are four 7-segment displays on the NEXYS3 board. However, only one can be used at a time.
� If we want to display four digits (inputs A, B, C, D), we can design a serializer that will only show one

digit at a time on the 7-segment displays.
� Since only one 7-segment display can be used at a time, we need to serialize the four BCD outputs.

In order for each digit to appear bright and continuously illuminated, each digit is illuminated for 1 ms
every 4 ms (i.e. a digit is un-illuminated for 3 ms and illuminated for 1 ms). This is taken care of by
feeding the output 'z' of the counter to 0.001 s to the enable input of the FSM. This way, state
transitions only occur each 0.001 s.

� Also, the enable signals for the 4 7-segment displays on the NEXYS are active low.

� Algorithmic State Machine (ASM) chart: This is a Moore-type FSM.

1

S1

resetn=0

s ← 00

s ← 01

S2

s ← 10

S3

s ← 11

S4

E

E

E

E

1

1

1

0

0

0

0

4

4

4

4

0

1

2

3

2

BCD to 7
segments
decoder

2-to-4
decoder

4

A

B

C

D

s

7

4buf buf(3) buf(2) buf(1) buf(0)

FINITE STATE MACHINE

resetn

Counter

(0.001s)

z

E

DEPARTMENT OF ELECTRICAL AND COMPUTER ENGINEERING, THE UNIVERSITY OF NEW MEXICO

ECE-238L: Computer Logic Design Fall 2013

Instructor: Daniel Llamocca

EXAMPLE: BIT-COUNTING CIRCUIT

� Sequential Algorithm:

� FSM + Datapath circuit:

sclr: Synchronous clear. In this case, if sclr = ‘1’, the count is initialized to zero. Note that here, we

do not need EC to be 1

� Algorithmic State Machine (ASM) chart:

C ← 0

while A ≠ 0

if a0 = 1 then

C ← C + 1

end if

right shift A

end while

A

din

s_l

E

0

s_l

E_sr

Parallel Access
Right Shift (MSB to LSB)

s_l = 1 → Load

s_l = 0 → Shift

Data

n

n

z a0

Q m

counter: m bits

m = ceil(log2(n)) + 1

E

sclr

EC

sclr_C

FINITE STATE MACHINE

s

resetn

C

done

S1

S2

resetn=0

1

0
s

z

sclr_C ← 1

E_sr, s_l ← 1

01

EC ← 1

1

0

E_sr ← 1

a0

S3

done ← 1

1
s

0

DEPARTMENT OF ELECTRICAL AND COMPUTER ENGINEERING, THE UNIVERSITY OF NEW MEXICO

ECE-238L: Computer Logic Design Fall 2013

Instructor: Daniel Llamocca

EXAMPLE: SIMPLE PROCESSOR

� Operation: Every time w = '1', we grab the instruction from ��� and execute it:
� ���� = |��|��|�	|
��|
�	|
��|
�	|

f Operation Function
000 Load Rx, Data Rx ← Data

001 Move Rx, Ry Rx ← Ry

010 Add Rx, Ry Rx ← Rx + Ry

011 Sub Rx, Ry Rx ← Rx - Ry

100 Not Rx Rx ← NOT (Rx)

101 And Rx, Ry Rx ← Rx AND Ry

110 Or Rx, Ry Rx ← Rx OR Ry

111 Xor Rx, Ry Rx ← Rx XOR Ry

R0
E

O
_
R
0

E
_
R
0

R1
E

O
_
R
1

E
_
R
1

R2
E

O
_
R
2

E
_
R
2

R3
E

O
_
R
3

E
_
R
3

A
E

O
_
G

E
_
A

G
E

ALU

E
_
e
x
t

CONTROL CIRCUIT

Data

o
p

4

w

fun
7

done

BUS

B

E
_
G

QD
n

Data_in
n

DEPARTMENT OF ELECTRICAL AND COMPUTER ENGINEERING, THE UNIVERSITY OF NEW MEXICO

ECE-238L: Computer Logic Design Fall 2013

Instructor: Daniel Llamocca

� Control Circuit:

� Arithmetic-Logic Unit (ALU):

op Operation Function Unit

0000

0001

0010

0011

0100

0101

0110

0111

y <= A

y <= A + 1

y <= A - 1

y <= B

y <= B + 1

y <= B – 1

y <= A + B

y <= A – B

Transfer ‘A’

Increment ‘A’

Decrement ‘A’

Transfer ‘B’

Increment ‘B’

Decrement ‘B’

Add ‘A’ and ‘B’

Subtract ‘B’ from 'A'

Arithmetic

1000

1001

1010

1011

1100

1101

1110

1111

y <= not A

y <= not B

y <= A AND B

y <= A OR B

y <= A NAND B

y <= A NOR B

y <= A XOR B

y <= A XNOR B

Complement ‘A’

Complement ‘B’

AND

OR

NAND

NOR

XOR

XNOR

Logic

Rx1

Rx0

Ex

DECODER

with

enable

0

1

2

3

0

1

E

E_R0

E_R1

E_R2

E_R3

Ry

Eo

DECODER

with

enable

0

1

2

3

0

1

E

O_R0

O_R1

O_R2

O_R3

Rx

so

0

1

2

2
2

FSM
done

w

f
3

Ex Eo so E
_
G

O
_
G

E
_
e
x
t

o
p

4

E_fun

QD

E

7
fun

7
funq

funq = |f2|f1|f0|Ry1|Ry0|Rx1|Rx0|

E
_
A

E
_
f
u
n

DEPARTMENT OF ELECTRICAL AND COMPUTER ENGINEERING, THE UNIVERSITY OF NEW MEXICO

ECE-238L: Computer Logic Design Fall 2013

Instructor: Daniel Llamocca

� Algorithmic State Machine (ASM):

S1

S2

resetn=0

1

0

E_ext, Ex ← 1

done ← 1

Eo, Ex ← 1

done ← 1

000

001

Eo, so ← 1

E_A ← 1

Eo, E_G ← 1

op ← 0110

O_G, Ex ← 1

done ← 1

010

S3a

S3b

Eo, E_G ← 1

op ← 0111

O_G, Ex ← 1

done ← 1

S4a

S4b

Eo, so ← 1

E_A ← 1

E_G ← 1

op ← 1000

O_G, Ex ← 1

done ← 1

S5a

S5b

Eo, so ← 1

E_A ← 1

Eo, E_G ← 1

op ← 1010

O_G, Ex ← 1

done ← 1

S6a

S6b

Eo, so ← 1

E_A ← 1

Eo, E_G ← 1

op ← 1011

O_G, Ex ← 1

done ← 1

S7a

S7b

Eo, so ← 1

E_A ← 1

Eo, E_G ← 1

op ← 1110

O_G, Ex ← 1

done ← 1

S8a

S8b

Eo, so ← 1

E_A ← 1

w

f

E_fun ← 1

011 100 101

110

111

DEPARTMENT OF ELECTRICAL AND COMPUTER ENGINEERING, THE UNIVERSITY OF NEW MEXICO

ECE-238L: Computer Logic Design Fall 2013

Instructor: Daniel Llamocca

EXAMPLE: ARBITER CIRCUIT

� FSM + Datapath circuit:

Three devices can request access to a certain resource at any time (example: access to a bus made
of tri-state buffers, only one tri-state buffer can be enabled at a time). The FSM can only grant access
to one device at a time.There should be a priority level among devices.
If the FSM grants access to one device, one must wait until the request signal to that device is
deasserted (i.e. set to zero) before granting access to a different device.

� Algorithmic State Machine (ASM) chart:

grant1

DEVICE 1
req1

grant2

DEVICE 2
req2

grant3

DEVICE 3
req3

FINITE STATE
MACHINE

resetn

clock

r1

r2

r3

CONTROL CIRCUIT

g1

g2

g3

priority

resetn=0

g1,g2,g3 ← 0

r1

g1 ← 1

r1

S1

r2

g2 ← 1

r2

r3

g3 ← 1

r3

1 1 1

0 0 0

0 1

0

1 1

0

S2 S3 S4

DEPARTMENT OF ELECTRICAL AND COMPUTER ENGINEERING, THE UNIVERSITY OF NEW MEXICO

ECE-238L: Computer Logic Design Fall 2013

Instructor: Daniel Llamocca

EXAMPLE: DISPLAYING PATTERNS ON 7-SEGMENT DISPLAYS

� Different patterns are shown based on the selector ‘sel’ signal. Two 7-segment displays are used.
� ‘stop’ input: If it is asserted (stop = 1), the lights’ pattern freezes.
� The input ‘x’ selects the rate of change (every 1.5, 1.0, 0.5, or 0.25 seconds).

� FSM + Datapath circuit:

sel[1..0]

00

01

10

11

segs[7..0] :

?
clock

resetn

2
8 segs

2

sel

x

stop

7 6

5

4

0

1

2 3

FINITE STATE
MACHINE

resetn

Q

clock

??

counter (1.5s)

z

Q ??

counter (1.0s)

z

Q ??

counter (0.5s)

z

FINITE STATE

MACHINE

stop

8

Q ??

counter (0.25s)

z

0

1

2

3

x

2

E

7
0

1

1-to-2
decoder

7

buf buf(1)

sel

2

s

x = 00 → Lights change every 1.5 s

x = 01 → Lights change every 1.0 s

x = 10 → Lights change every 0.5 s

x = 11 → Lights change every 0.25 s

Counter

(0.001s)

z

E

D Q
E

dseg

7Esg

8

DEPARTMENT OF ELECTRICAL AND COMPUTER ENGINEERING, THE UNIVERSITY OF NEW MEXICO

ECE-238L: Computer Logic Design Fall 2013

Instructor: Daniel Llamocca

� Algorithmic State Machine (ASM) chart:

� Algorithmic State Machine (ASM) chart: This is the FSM that controls the output MUX

S1

resetn=0

1

0
E

sel

S2

1

0

E

S3

1

0

E

S4

1

0

E

S5

1

0

E

S6

1

0

E

S7

1

0

E

S8

1

0

E

S9

1

0

E

S10

1

0

E

S11

1

0

E

S12

1

0

E

S13

1

0

E

00 11

01 10

dseg←00000111, Esg←1 dseg←00000101, Esg←1 dseg←00000011, Esg←1 dseg←00110011, Esg←1

dseg←00001110, Esg←1 dseg←00001010, Esg←1 dseg←00110000, Esg←1 dseg←01100110, Esg←1

dseg←00011100, Esg←1 dseg←00010100, Esg←1 dseg←00001100, Esg←1 dseg←11001100, Esg←1

dseg←00111000, Esg←1 dseg←00101000, Esg←1 dseg←11000000, Esg←1 dseg←10011001, Esg←1

S1

resetn=0

s ← 0

s ← 1

S2

E

E

0

0

1

1

DEPARTMENT OF ELECTRICAL AND COMPUTER ENGINEERING, THE UNIVERSITY OF NEW MEXICO

ECE-238L: Computer Logic Design Fall 2013

Instructor: Daniel Llamocca

EXAMPLE: SERIAL MULTIPLIER

� Sequential Algorithm:

� FSM + Datapath circuit: Note that this algorithm can also be run on a simple processor. Here, we

use dedicated circuitry.
sclr: Synchronous clear. In this case, if sclr = ‘1’ and E =’1’, the register contents are initialized to 0.

� Algorithmic State Machine (ASM) chart:

P ← 0, Load A,B

while B ≠ 0

if b0 = 1 then

P ← P + A

end if

left shift A

right shift B

end while

A

din

s_l

E

0

LA

EA

Parallel Access

s_l = 1 → Load

s_l = 0 → Shift

"00..0"&DataA

2n

2n

resetn

B

din

s_l

E

0

LB

EB

DataB

n

n

z b0

+

2n

P
E

sclr

EP

sclrP

2n
FSM

s

done

s
c
l
r
P

z

b0

E
P

E
A

L
A

E
B

L
B

Shift-rightShift-left

S1

S2

resetn=0

1

0
s

z

sclrP ← 1

EP ← 1

EA, EB ← 1

01

EP ← 1

1

0
b0

S3

done ← 1

1
s

0

LA, EA, LB, EB ← 1

